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Let’s start with the good news first: Mathematics has been and continues to be the most 
important contributor to any large scale computational science. This is simply so, since 
computational complexity becomes ever more important with faster computers. Once the 
systems are large enough, the algorithms with a better asymptotic complexity will always 
make the winner. Math journals, such as SINUM or SISC (for which I had served as EIC) are 
full of great papers advancing computational science. 

However, having said this, we find that these novel algorithms often underperform by many 
orders of magnitude. Different from what may be a belief in parts of the math community, it 
is not that we just need a few extra weeks for converting matlab to Fortran and MPI. 
Designing efficient HPC software requires much more creative research and the 
deficiencies are much more fundamental.  

• Nothing is more practical than a good theory, but in the math community there is a 
deeply rooted misconception about the role of rigorous theory. For example, a 
rigorous asymptotic bound of the form 𝑒 ≤ 𝐶  ℎ!  has only heuristic implications when 
assessing the quality of a discretization for all finite values of ℎ (that is in all practical 
computing). Such theorems are a poor basis or for comparing one discretization to another 
one of the same or even a different order, as long as the constants remain unspecified. 
We need more quantitative theory. Where this is not available, systematic numerical 
experiments are as important or even more important than rigorous theory. Some fields of 
contemporary applied math have an underdeveloped tradition in systematic algorithmic 
benchmarking. This starts with a lack of generally accepted standard test examples. 
Therefore, the numerical cost of an algorithm (i.e. the number of flops induced by using a 
specific discretization or by a specific solver) is frequently left unquantified. Consequently 
rather inefficient algorithms remain in use even when better alternatives exist.  
• On modern computer systems, the traditional cost metric of numerical 

mathematics (i.e. the Flops for solving a problem) fails increasingly to correlate with 
the truly relevant cost factors, such as time to solution or energy consumption. It will be 
necessary to quantify much more complex algorithmic characteristics, such as memory 
footprint and memory access structure (i.e. cache re-use, uniformity of access, utilization 
of block-transfers, etc) processor utilization, communication and synchronization 
requirements. These effects must be built into better complexity models – models that 
are simple enough that they can be used, but that capture the true nature of computational 
cost much better than just counting the Flops. 
• For exascale computational science we need to develop a more systematic integrated 

algorithm engineering methodology. Starting from the mathematical model, we should 
predict a-priori what performance is achievable, and then we must evaluate our 
realization with respect to such a prediction, accounting for all the discrepancies. This 
must be done on all levels of the “simulation pipeline”, starting with the mathematical 
model, the discretization, the solver, its sequential implementation, and eventually its 
parallelization. It is essential that this is not just seen as tweaking a given algorithm to run 
fast on particular architecture, but as a true co-design. This in particular includes the 
design and development of the algorithms and data structures. For example, when it is 
known that a 2D multigrid Poisson solver reaches ℎ!-discretization accuracy in less than 
30 operations per unknown, then we must justify the use of a more complicated 
discretization and more expensive solver for the same problem class. There may be good 



reasons, but such algorithmic choices must be based on clear arguments accounting 
for the accuracy achieved relative to the cost. 
• On the implementation side, often even the sequential version of an algorithm 

reaches only a fraction of the peak performance of a core. We should justify why this is the 
case. For example, we may find that the memory or communication bandwidth is the 
relevant bottleneck. Generally, theory must guide us what bounds for the hardware 
performance we must expect, and the design process must be based on a systematic 
accounting for the limiting resources. For this it is essential to have realistic a-priori cost 
predictions everywhere in the development process. And quite generally, we should be 
more honest when assessing parallel performance. “David Bayley’s “Twelve Ways for 
Fool the Masses …”1 are still too much in use. 

This list of deficiencies provides already enough problems for a multi-decade math research 
program, but beyond there are also great opportunities for novel mathematical research 
directions. I’ll mention a few: 

• With 109 parallel threads (in a future exscale system) we must avoid all unnecessary 
communication and synchronization. While research has already staretd in fields such as 
dense linear algebra, this is wide open elsewhere, e.g. for iterative solvers. New 
asynchronous, communication avoiding algorithms must be designed. Lower bounds 
must be found on how much communication/synchronization is necessary to solve a 
particular problem. Chaotic relaxation strategies or stochastic and nondeterministic 
algorithms may become a key innovation needed for exascale, and they may at the same 
time provide for more robustness and built-in fault tolerance overall. 
• Exascale will provide the computational power to go from qualitative simulation to 

predictive simulation, and from predictive simulation to optimization, parameter 
identification, inverse problems; it will enable stochastic simulations and to better 
quantify uncertainties.  
• Exascale enables us to bridge physically from the meso-scale to human scale. 

With mesa-scale, I mean here physical scales such as the cell of a biological system, a 
particle in a pile of sand, or a pore in an aquifer. A living human has around 1011 neurons 
and 1013 red blood cells, a pile of sand may have 1010 grains. The mesoscale is halfway 
between atomic scale and human scale. Mesoscale requires to deal with large numbers 
of objects, but such ensembles may become tractable on exascale systems, since with 
1018 Flop/s we can still perform O(105) Flop/s for each human blood cell per second. Thus 
exascale may offer new possibilities for simulation science that have been out of reach 
without. However, to exploit this, new methods must be devised to model and simulate 
large mesoscopic ensembles for long enough times. New algorithms must be invented for 
this, new modeling paradigms devised. New techniques for validation and verification 
are needed: we are not interested to predict each individual blood cell in a human being 
accurately, but the ensemble behavior must be physically meaningful and must provide e.g. 
physiological insight beyond classical techniques. There are close relations here to 
multiscale-modeling and multiphysics, but these fields gain new momentum with the 
advent of exascale. A myriad of interesting and open research topics can be derived from 
this. 

 
Summarizing: I believe that the advent of exascale forces mathematics to address the 
performance abyss that widens increasingly between existing math theory and the 
practical use of HPC systems. Tweaking codes is not enough – we must turn back and 
analyze where we have not yet thought deeply enough, developing a new interdisciplinary 
algorithm and performance engineering methodology. Beyond this, exascale opens 
fascinating new opportunities in fundamental research that go far beyond just 
increasing the mesh resolution. The opportunities created by asynchronous algorithms 
or large scale mesoscpoic modeling are just two examples.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 See a modernized version at: 
http://www10.informatik.uni-erlangen.de/Misc/EIHECS6/Hager.pdf	
  http://www10.informatik.uni-erlangen.de/Misc/EIHECS6/Hager.pdf	
  


